HF 蚀刻+逐层抛光法表征熔石英亚表面损伤层深度

杨明红^{1,2} 赵元安¹ 易 葵¹ 邵建达¹

(¹中国科学院上海光学精密机械研究所强激光材料重点实验室,上海 201800) ²中国科学院研究生院,北京 100049

摘要 脆性材料的研磨过程会不可避免地产生亚表面损伤层,对亚表面损伤层的表征和抑制一直是获得高激光损 伤阈值熔石英光学元件的关注热点。回顾了几种亚表面有损表征技术,通过实验重新评价了蚀刻表面峰谷(PV) 粗糙度法的可行性,分析了其误差较大的原因。在此基础上,提出了一种新的亚表面损伤层深度检测方法—— HF 蚀刻+逐层抛光法。分别采用这两种表征技术以及粗糙度估计法、磁流变斜面抛光法对不同工艺研磨的熔石英亚 表面裂纹深度进行了对比检测,结果表明这几种表征方法相互符合很好。

关键词 光学制造;亚表面损伤;HF蚀刻+逐层抛光法;疏松研磨剂研磨;磁流变抛光 中图分类号 TG356.28 **文献标识码** A **doi**: 10.3788/CJL201239.0303007

Subsurface Damage Characterization of Ground Fused Silica by HF Etching Combined with Polishing Layer by Layer

Yang Minghong^{1,2} Zhao Yuan'an¹ Yi Kui¹ Shao Jianda¹

 ¹ Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
 ² Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Abstract Subsurface damage would be inevitably formed during grinding of brittle material. The characterization and removal of the subsurface damage remains the main concern to acquire the high laser-induced damage threshold fused silica optics. Several subsurface damage characterization techniques are revieved, in which the feasibility of etching and surface peak-to-valley (PV) roughness method is revaluated experimentally and the error is also analyzed. Herein a new subsurface damage characterization using HF etching and polishing layer by layer is proposed. Then, these subsurface damage characterization techniques are compared in applying to ground fused silica samples. And a good concordance between different measurements is found.

Key words optical fabrication; subsurface damage; HF etching and polishing layer by layer; looser abrasive grinding; magnetorheological finishing

OCIS codes 140.3330; 220.4610; 220.5450

1 引 言

强激光系统的高通量激光对构成其运行通道的 光学元器件(如 K9 玻璃、熔石英及镀在其上的薄膜 元件等)抗激光损伤能力提出了很高的要求。而光学 冷加工导致的亚表面缺陷严重制约了这些元器件抗 激光损伤能力的提高。诱导激光损伤发生的亚表面 缺陷主要包括抛光引入的杂质污染和研磨、抛光过程 中形成的亚表面损伤(SSD),如划痕、裂纹等。对于 脆性材料研磨或抛光导致的 SSD 分布及其产生机 制,国内外已有大量的文献报道^[1~9]。其中研磨过程 的材料去除机制可以看作是多重研磨裂纹的交叉重 叠导致的材料脆性碎裂,因此研磨后的脆性材料表面

作者简介:杨明红(1980—),男,博士研究生,主要从事激光材料损伤和亚表面缺陷等方面的研究。

收稿日期: 2011-11-07; 收到修改稿日期: 2011-11-30

基金项目:国家自然科学基金(60878045)资助课题。

E-mail: yangmh@siom.ac.cn

导师简介:邵建达(1964—),男,博士,研究员,博士生导师,主要从事光学薄膜技术与光电信息功能薄膜等方面的研究。 E-mail: jdshao@siom.ac.cn

以下必然会存在研磨裂纹层^[1~6]。研磨裂纹的最终 完全去除是在抛光过程中通过保持足够多的抛光去 除深度来实现的。因此表征和抑制研磨损伤层深度, 从而减少抛光时间,成为一项重要的研究课题。

目前文献中已提出多种 SSD 深度评价方法。 传统的方法主要包括角度抛光法[3]和击坑法[10],利 用特殊的抛光技术去除部分材料(去除厚度超过 SSD 深度),再结合化学蚀刻打开裂纹,然后用光学 显微镜观察来确定 SSD 深度。这些方法所用的传 统或化学机械抛光,本身可能会形成新的裂纹或造 成原有裂纹扩展,因而后来被磁流变抛光(MRF)所 代替,分别发展成为磁流变斜面抛光[5,6]和磁流变 斑点抛光^[11]两种检测技术。MRF 是基于剪切去除 原理,施加在样品表面的正压力很小,基本不会产生 新的 SSD,因而其检测精度相对更高。基于 HF 的 湿法化学蚀刻技术无论是在检测抛光样品中,还是 在检测只经过研磨的样品中都起着重要的作用。因 为 SSD 总是处于闭合状态或被抛光层所覆盖,很难 直接观察到。也有许多研究者提出的 SSD 检测方 法主要基于 HF 蚀刻。Carr 等^[12]利用原子力显微 镜(AFM)研究了玻璃抛光样品蚀刻不同深度后的 表面形貌和粗糙度变化,从此"蚀刻+看看"成为检 测抛光样品亚表面缺陷残留的一种简单易行的方 法。Neauport 等^[13]提出两种检测研磨裂纹深度的 方法——蚀刻溶液特征成分浓度法和蚀刻表面峰谷 (PV)粗糙度法,都基于 HF 蚀刻技术。

本文通过实验重新评价了蚀刻表面 PV 粗糙度 法的可行性,分析了其误差较大的原因,在深入理解 蚀刻坑点深度随蚀刻时间演化过程的基础上,提出 一种更准确的研磨损伤层深度检测方法——蚀刻坑 点最大深度法。这种方法的关键是估算出合适的蚀 刻时间,至于蚀刻坑点深度的测量,可以用逐层抛光 法获得(HF 蚀刻+逐层抛光法),也可以使用触针 式台阶仪测量(类似于蚀刻表面 PV 粗糙度法,准确 性略差)。分别利用蚀刻表面 PV 粗糙度法,准确 性略差)。分别利用蚀刻表面 PV 粗糙度法,准确 性略差)。分别利用蚀刻表面 PV 粗糙度法,他刻坑 点最大深度法以及 MRF 斜面抛光法对不同研磨样 品进行了损伤层深度对比检测。数据表明,蚀刻坑 点最大深度法的检测结果与其他方法符合很好,因 而可以作为一种简单易行的方法应用于光学加工工 艺的优化中。

2 实 验

2.1 样品制备

所用样品均为从同一块棒料上切割下来的熔石

英(JGS1)基片,尺寸为 ϕ 50 mm×5 mm。采用金刚 砂疏松研磨剂进行研磨,每道研磨工序的去除深度 都足够深以去除上道工序的残留裂纹,其中裂纹深 度根据 Miller 关系^[5]估计。各样品制备方法如表 1 所示。所有样品在研磨过程中均保持压力和转速等 工艺参数完全相同,以保证每类样品之间的亚表面 裂纹深度相差不大。研磨样品表面 PV 粗糙度采用 触针式台阶仪 Alpha-Step 500 来测量。探针直径 10 μ m,每个样品选取 16 个测量位置,每个测量位 置扫描长度为 5 mm。PV 值取 16 次测量中的最 大值。

表 1	所用样品的制备方法

Table 1 Sample preparation methods					
C/N	Last diamond	Surface roughness			
5/ IN	abrasive used	PV $R_{ m t}/\mu{ m m}$			
S_1	W 40	7.43			
S_2	W 40	7.68			
S_3	W 28	4.97			
S_4	W 28	4.83			
S_5	W 28	5.03			
S_6	W14	2.83			
S_7	W14	2.46			
S_8	W14	2.21			

2.2 蚀刻表面 PV 粗糙度法的原理及其误差分析

基于 HF/NH₄F 混合溶液的湿法化学蚀刻对 熔石英表面孤立缺陷(压痕、划痕)和密集分布缺陷 (研磨表面)形貌的影响在文献[14]中得到了详细的 研究,这里采用同样的蚀刻技术进行实验。所用蚀 刻溶液 HF 和 NH₄F 的质量分数分别为 2.45%和 38%,环境温度为(22±1)℃,蚀刻前用去离子水超 声清洗以去除表面污染物;蚀刻时,把样品竖放在夹 具(聚四氟乙烯材料制作)上并一起浸没在蚀刻溶液 中,并每隔 1 h 搅拌一下,以确保浓度分布均匀;蚀 刻后用去离子水冲洗,以去除残留酸液。蚀刻表面 形貌用莱卡 DMR 偏振光学显微镜观察。W14 研磨 样品蚀刻后表面形貌随蚀刻时间的变化如图 1 所 示。研磨表面蚀刻后形成了典型的碗状坑点结构, 这与文献[14]的实验结果一致。

每个碗状坑点都是由一个表面裂纹蚀刻后形成 的。对于孤立的表面裂纹来说,由于底部和侧壁上 的蚀刻速率相等,蚀刻坑点深度不会随蚀刻时间的 增加而明显减少,且直径与蚀刻时间成正比;然而对 于密度很高的研磨表面裂纹,相邻蚀刻坑点直径在 蚀刻过程中持续增加会导致它们之间发生交叠、合 并,形成更大的连续蚀刻坑点,从而造成蚀刻坑点深 度随蚀刻时间的增加而减少,同时也使得坑点直径 与蚀刻时间不再呈正比关系。

蚀刻坑点的这种变化可以用一个简单的几何模型^[14]来解释,如图 2 所示。在 t = 0 时,蚀刻还没有 开始,所有裂纹都处于闭合状态。在 $t = t_1$ 时,裂纹 被打开并形成一系列相互独立的蚀刻坑点。在 $t = t_2$ 时,蚀刻坑点直径增大到相互接触,并开始逐渐合 并。对于裂纹分布间隔均匀的表面,发生交叠所需要 的蚀刻时间(t_2)可以表示为

$$t_2 = \frac{S}{2 \times r_{\rm b}},\tag{1}$$

式中r。为基体的蚀刻速率,可以用熔石英抛光表面的蚀刻去除速率来代替;S为裂纹的平均间隔,可以

- 图 2 裂纹表面轮廓随蚀刻时间演化的二维几何模型[14]
- Fig. 2 Two-dimensional geometry model describing the variation of crack surface with etch time

在蚀刻较短时间(10~30 min)的研磨样品上统计得 到。在蚀刻坑点合并发生之前(即 $t < t_2$),表面 PV 粗糙度 δ_{PV} ,即蚀刻坑点的最大深度,由裂纹最大深 度 C决定($\delta_{PV} \approx C$)。当蚀刻坑点合并发生后($t > t_2$),蚀刻坑点最大深度开始减少,即 δ_{PV} 开始减少, 从而 $\delta_{PV} < C$ 。因此蚀刻对研磨裂纹层的影响可以 看成是蚀刻打开裂纹,并把它转化成一种表面粗糙 度。当蚀刻时间 $t < t_2$ 时,通过测量表面 PV 粗糙度 或蚀刻坑点最大深度可以估算出原始裂纹的最大 深度。

文献[13]在此基础上提出了蚀刻表面 PV 粗糙 度法来检测研磨裂纹层深度,即采用触针式台阶仪 测量蚀刻表面 PV 粗糙度随蚀刻时间的变化,测得 的 PV 粗糙度最大值,即认为代表了裂纹层的深度。 但作者没有明确限制蚀刻时间,对于裂纹密集分布 的研磨表面,如果 PV 粗糙度达到最大值的蚀刻时 间远大于该样品的 t₂ 时间,那因此 PV 值可能会比 样品原有裂纹层的深度小很多。

实际上,表面粗糙度的测量精度受台阶仪探针 直径的影响非常大。要准确地测出蚀刻时间 t 的样 品 PV 粗糙度,探针直径至少要小于蚀刻坑点的直 径(2× r_b ×t,t< t_2),否则测量值比实际值偏小。实 际测得的 PV 粗糙度变化规律,往往是先逐渐增大, 达到最大值后平稳下降,而不是先以某个较大值恒 定不变,然后快速下降,其原因可能是因为探针直径 过大,使得测量结果不准确。图 3 所示为用直径 30 μ m的探针测得的 PV 粗糙度随蚀刻时间的变化 曲线(扫描长度 2 mm,测量点数 5 个)。从图中可 以看出,刚开始时, δ_{PV} 随着蚀刻时间的增加而增大, 当蚀刻时间为 12 h 时才达到最大值。此时的测量 值比较接近实际值,但测得的结果(9 μ m)已经远小 于此类样品的裂纹层深度(23 μ m,MRF 斜面抛光 法测得,详见 2.4 节)。对于 W14 研磨的样品,S 约

图 3 表面 PV 值随蚀刻时间的变化 Fig. 3 Variation of surface PV roughness with etch time

为 11 μ m, r_b 取 1.6 μ m/h,因而蚀刻坑点开始发生 合并的时间 t_2 约为 3.5 h(3.5 h×1.6 μ m/h×2~ 11.2 μ m)。PV 粗糙度在蚀刻 3.5 h 左右或之前达 到最大值才能得到较为准确的检测结果。而此时的 蚀刻坑点直径约为 11 μ m,这要求探针直径必须小 于 11 μ m。

2.3 基于蚀刻坑点最大深度的 SSD 深度检测

基于对 PV 粗糙度法局限性的认识,提出了蚀 刻坑点最大深度法来检测裂纹层深度。其与前者的 区别在于强调要测出整个蚀刻过程中的蚀刻坑点最 大深度,因而必须限制蚀刻时间在 t₂ 之内。而前者 只关注在蚀刻过程中 PV 粗糙度的最大值,容易忽 略粗糙度检测条件,从而得到误差较大的结果。但 蚀刻时间也不能太短,否则蚀刻反应可能未到达裂 纹底部或坑点直径太小不容易测出其实际深度。至 于蚀刻坑点深度的测量,可以用逐层抛光法,也可以 直接用台阶仪测量 PV 值,但后者要注意检测条件, 保证能测出蚀刻坑点的真实深度。

逐层抛光法可以获得整个基片上的蚀刻坑点最 大深度,其具体做法如下:采用传统的顶针式沥青抛 光模进行抛光,抛光粉为澳大利亚进口 CeO₂(粒径 0.5 µm),并保持抛光压力和转速不变。通常在抛 光过程中,每隔一段时间,就要停下来检测面形,并 借此改变顶针伸出的长度,以保证样品面形在抛光 过程中逐渐达到所要求的指标。在样品每次取下来 观察面形变化的同时,均用光学显微镜在100×模 式下观察和统计表面的蚀刻坑点密度。在抛光过程 中形成的再沉积层可能会把直径较小的蚀刻坑点覆 盖,为了尽量减少抛光再沉积层的影响,每次取下后 立即用去离子水超声清洗。在蚀刻坑点密度变得较 小时,每隔20 min(约去除 $0.5 \mu m$)取下观察一次, 直到表面无典型的蚀刻坑点才结束抛光。抛光去除 厚度用千分表来测量,其测量误差为±0.5 μm,再 加上蚀刻坑点是否消失的判断误差,最后所得蚀刻 坑点最大深度的误差估计为±1 µm。W14 研磨的 样品蚀刻12 h,再经抛光去除不同深度后的表面形 貌如图 4 所示。由此可以判断出整个基片上的蚀刻 坑点最大深度为 14.8~16.0 µm。明显大于 PV 粗 糙度测量值(δ_{PV}=9 μm)。

图 4 蚀刻 12 h 的样品抛光不同深度后的表面形貌

Fig. 4 Morphology of the etched sample (12 h) with different removal depths by polishing

为了从实验上验证选择合适蚀刻时间的必要性, 选择5个W14研磨且PV粗糙度相差不大的样品,分 别蚀刻不同时间,然后测量其蚀刻坑点最大深度,测 量结果如图5所示。其中圆点代表的数据为台阶仪 测得的PV粗糙度最大值,方块代表的数据为台阶仪 测得的PV粗糙度最大值,方块代表的数据是随后用 抛光层析法获得的,横线代表的数据为利用磁流变斜 面抛光技术的检测结果,其所用样品与蚀刻3h的样 品为同一个样品,具体做法是先用 MRF 斜面法检测 中间区域(1.4 cm×4.0 cm)裂纹层深度,后用蚀刻法 检测其他区域裂纹层深度。为了减少粗糙度测量误 差,使用直径为 10 μm 的探针,扫描长度增大到 5 mm,测量位置增加到 16 个,且均匀分布在样品表面上,结果取 16 次测量的最大值。

图 5 中蚀刻 30 min 的样品蚀刻坑点最大深度 偏低,是因为蚀刻反应还没有达到裂纹底部,具体表 现为当蚀刻坑点消失后仍然有典型研磨裂纹残留; 其他样品随着蚀刻时间的增加,蚀刻坑点最大深度 有较大幅度的降低(21.5~15 μm)。蚀刻 3 h 的样 品,用逐层抛光法获得的蚀刻坑点最大深度最接近 MRF 斜面法的检测结果,因此蚀刻时间控制在 t₂

时间左右非常必要。同时也可以看出,当蚀刻时间 t≥6 h时,两种测量方法得到的蚀刻坑点最大深度 符合很好。在蚀刻时间为3 h时,两者也只相差 13%。因此,在判断蚀刻坑点最大深度上,逐层抛光 法比 PV 粗糙度法准确度更高;但选择合适的探针 直径和测量策略,PV 粗糙度法也不失为一种较为 准确、方便的方法。

此外,传统沥青抛光过程会在工件表面形成厚约 100 nm 的再沉积层,这可能影响到对蚀刻坑点 是否完全消失的判断。为了消除这个疑问,所有经 逐层抛光法检测过的样品,均用质量分数为 1%的 HF 蚀刻 5 min(约去除 100 nm,只能去除抛光层而 不会形成如图 4 所示那样典型的蚀刻坑点)后再观 察。结果发现,8 个样品中只有 1 个重新出现几个 较小的蚀刻坑点。其原因可能有两点:1) 抛光过程 中,每次取下样品观察前都用去离子水超声清洗,使 得再沉积物来不及固化就被清洗掉;2) 典型的蚀刻 坑点直径均较大(即使在坑点底部也能达到几微 米),不易被再沉积层覆盖。

2.4 基于 MRF 的 SSD 深度检测

MRF 是一种亚孔径抛光技术,与传统抛光不同,MRF 是基于剪切去除原理,施加于样品表面的 正压力很小,基本不会产生新的裂纹,也不会促使原 有裂纹扩展。因而可以用来代替传统抛光,在样品 上击坑或角度抛光去除局部材料来检测研磨裂纹分 布。检测原理在文献[5,6]中有详细描述,这里利用 斜面抛光法来检测研磨裂纹层深度。

具体检测方法如下:首先用国防科学技术大学 研制的 KDMRF21000 磁流变抛光机,在样品中间 抛光出一个斜面(沟槽),然后用质量分数为1%的 HF 溶液蚀刻 5 min 打开裂纹,以利于光学显微镜 观察。该斜面的横截面深度轮廓用 VEECO Dektak 6M 触针式台阶仪来测量,测量探针直径 12.5 μm, 垂直分辨率 4 nm。然后把样品放在一个精度为 1 μm 的位移平台上,用光学显微镜沿台阶仪的测量 路径观察,从斜面边缘直到裂纹完全消失,算出最后 出现裂纹处到斜面边的水平距离。为了减少测量误 差,在斜面上选取 5 个不同位置重复上述步骤,取其 最大值。把得到的水平距离代入到深度轮廓曲线 中,即可得到裂纹的最大深度。

以 W14 研磨样品为例, MRF 形成的斜面深度 轮廓及距斜面边缘不同水平距离处的光学显微镜形 貌如图 6 所示。最后出现裂纹处到斜面边缘的距离 为 4.173 mm, 根据深度轮廓曲线, 可以算出研磨裂 纹的最大深度约为 23 μm。

图 6 用 MRF 斜面抛光法检测研磨裂纹层深度 Fig. 6 Measurement of the grinding cracks depth by MRF wedge method

3 实验结果与分析

在 2.1 节里描述的不同研磨工艺研磨的样品分 别用在 2.3 节和 2.4 节所描述的方法检测了其裂纹 层深度。由于粗糙度测试条件的局限性(探针直径 最小只有 10 μ m),并不能保证所有样品蚀刻 t_2 时 间后的坑点最大深度都能测出来。因此 HF 蚀刻+ PV 粗糙度法仍然选择原来的策略,即寻找在蚀刻 过程中的 PV 粗糙度的最大值。HF 蚀刻+逐层抛 光法的具体做法如下:首先根据研磨样品的裂纹平 均间隔(样品蚀刻 20 min 后,用光学显微镜统计)和 熔石英基体蚀刻速率(1.6 μm/h)估算出蚀刻时间 t2, 蚀刻后采用 2.3 节所述的逐层抛光法检测整个 样品上的蚀刻坑点最大深度。因而在这些判断研磨 裂纹深度的方法中,除了根据 Miller 关系^[5]计算的 方法外,都属于有损探测方法,很难同时把这些方法 应用在同一个研磨表面上。但样品 S₈ 例外,具体做 法是先用磁流变斜面抛光法在样品中间位置检测,

检测区域约为 1.4 cm×4.0 cm;然后蚀刻 3 h,用台 阶仪测量剩余部分的蚀刻表面 PV 粗糙度;接着用 逐层抛光法检测这一部分的蚀刻坑点最大深度。测 试结果如表 2 所示。

表 2 不同方法检测的各种研磨样品裂纹层深度对比

Table 2 Comparison of different SSD measurement

methods on various diamond ground samples

S/N	9.1 $R_{ m t}/\mu{ m m}$	HF etch & PV roughness / µm	HF etch & polishing layer by layer /μm	MRF wedge / µm
S_1	67.61	71.7		
S_2	69.89		73	
S_3	45.23	35.4		
S_4	43.95		45	
S_5	45.77			42
S_6	25.75	19.8		
S_7	22.39		25	
S_8	20.11	18.6	21.5	23

从测试数据可以看出,首先根据裂纹层深度与 研磨表面 PV 粗糙度^[5]的关系,可以估算出一个比 较可信的结果。在其他三种有损检测方法中,HF 蚀刻+PV 粗糙度法检测结果相对于另两种方法偏 差明显偏大,一方面可能是受台阶仪探测精度所限, 另一方面也与取样区域有限有关。HF 蚀刻+逐层 抛光和磁流变斜面抛光两种方法的检测结果与 9.1*R*,估计值都比较接近,值得一提的是在同一个样 品上两种有损方法的检测结果非常接近。磁流变斜 面抛光法的准确性已被很多研究者所公认,这说明 HF 蚀刻+逐层抛光也是一种相对比较准确的裂纹 层深度评价方法。虽然其与 PV 粗糙度法的原理相 似,但由于它不依赖于粗糙度检测,所以相对于 PV 粗糙度法更有优越性,所有用这种方法测得的结果 与 9.1*R*,的估计值偏差不超过 14%。

4 结 论

使用不同粒径的金刚石疏松研磨剂(W40、W28、W14)研磨出具有不同裂纹层深度的熔石英样品,然后用4种不同方法对这些样品的裂纹层深度进行了检测。这些方法测得的结果之间符合很好,最大偏差不超过22%。这些偏差主要是由于PV 粗糙度的检测误差引入的。为了解决这个问题,引入了逐层抛光法,其不再依赖于PV 粗糙度的检测, 提供了一个相对更为准确的研磨裂纹层深度评价方法。该方法好处是不需要另外添加昂贵的仪器,简 单而经济,并且对于抛光后的亚表面缺陷,如划痕等 孤立缺陷的深度检测也适用,同时也可应用于其他 脆性材料,如 K9 玻璃、石英晶体或硅片的亚表面缺 陷深度检测。

致谢 有关磁流变斜面抛光检测的工作是在国防科 学技术大学进行的,特此感谢石峰博士等人的协助。

参考文献

- 1 Zhang Wei, Zhu Jianqiang. Effect of bound diamond abrasives fabrication technology on subsurface damage in Nd-doped phosphate glass[J]. *Chinese J. Lasers*, 2008, **35**(2): 268~272 张 伟,朱健强. 固着磨料加工工艺对磷酸盐钕玻璃亚表面缺陷的影响[J]. 中国激光, 2008, **35**(2): 268~272
- 2 Zhang Wei, Zhu Jianqiang. Experimental investigation on surface/subsurface damage of Nd-doped phosphate glass[J]. Acta Optica Sinica, 2008, 28(2): 268~272

张 伟,朱健强.磷酸盐钕玻璃表面/亚表面损伤特性实验研究 [J].光学学报,2008,**28**(2):268~272

- 3 P. Hed, D. F. Edwards. Optical glass fabrication technology 2: relationship between surface roughness and subsurface damage [J]. Appl. Opt., 1987, 26(21): 4677
- 4 T. Suratwala, L. Wong, P. Miller et al.. Sub-surface mechanical damage distributions during grinding of fused silica [J]. Journal of Non-Crystalline Solids, 2006, 352 (52-54): 5601~5617
- 5 P. E. Miller, T. I. Suratwala, L. L. Wong *et al.*. The distribution of subsurface damage in fused silica [C]. SPIE, 2005, **5991**: 56~68
- 6 Z. Wang, Y. Wu, Y. Dai *et al.*. Subsurface damage distribution in the lapping process [J]. *Appl. Opt.*, 2008, 47 (10): 1417~1426
- 7 S. Li, Z. Wang, Y. Wu. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes [J]. *Journal of Materials Processing Technology*, 2008, **205**(1-3): 34~41
- 8 T. Suratwala, R. Steele, M. D. Feit *et al.*. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing[J]. *Journal of Non-Crystalline Solids*, 2008, 354(18): 2023~2037
- 9 Y. Li, J. Hou, Q. Xu *et al.*. The characteristics of optics polished with a polyurethane pad [J]. Opt. Express, 2008, 16(14): 10285~10293
- 10 Y. Zhou, P. D. Funkenbusch, D. J. Quesnel *et al.*. Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses[J]. *J. Am. Ceram. Soc.*, 1994, **77**(12): 3277~3280
- 11 J. C. Lambropoulos, Y. Li, P. Funkenbusch *et al.*. Noncontact estimate of grinding subsurface damage[C]. SPIE, 1999, 3782: 41~50
- 12 J. W. Carr, E. Fearon, L. J. Summers *et al.*. Subsurface damage assessment with atomic force microscopy [C]. In Proceedings of the 1st International Conference and General Meeting if the European Society of Precision Engineering and Nanotechnology, Bremen, Germany, 1999
- 13 J. Neauport, C. Ambard, P. Cormont *et al.*. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Opt. Express, 2009, 17(22): 20448~20456
- 14 L. Wong, T. Suratwala, M. D. Feit *et al.*. The effect of HF/ NH₄F etching on the morphology of surface fractures on fused silica[J]. *Journal of Non-Crystalline Solids*, 2009, **355**(13): 797~810